Scaling limits for critical inhomogeneous random graphs with finite third moments∗
نویسندگان
چکیده
We identify the scaling limit for the sizes of the largest components at criticality for inhomogeneous random graphs with weights that have finite third moments. We show that the sizes of the (rescaled) components converge to the excursion lengths of an inhomogeneous Brownian motion, which extends results of Aldous [1] for the critical behavior of Erdős-Rényi random graphs. We rely heavily on martingale convergence techniques, and concentration properties of (super)martingales. This paper is part of a programme initiated in [16] to study the near-critical behavior in inhomogeneous random graphs of so-called rank-1.
منابع مشابه
Novel scaling limits for critical inhomogeneous random graphs
We find scaling limits for the sizes of the largest components at criticality for the rank-1 inhomogeneous random graphs with power-law degrees with exponent . We investigate the case where ∈ (3, 4), so that the degrees have finite variance but infinite third moment. The sizes of the largest clusters, rescaled by n−( −2)/( −1), converge to hitting times of a ‘thinned’ Lévy process. This process...
متن کاملCritical behavior in inhomogeneous random graphs
We study the critical behavior of inhomogeneous random graphs where edges are present independently but with unequal edge occupation probabilities. We show that the critical behavior depends sensitively on the properties of the asymptotic degrees. Indeed, when the proportion of vertices with degree at least k is bounded above by k−τ+1 for some τ > 4, the largest critical connected component is ...
متن کاملCritical window for the configuration model: finite third moment degrees
We investigate the component sizes of the critical configuration model, as well as the related problem of critical percolation on a supercritical configuration model. We show that, at criticality, the finite third moment assumption on the asymptotic degree distribution is enough to guarantee that the component sizes areO(n) and the re-scaled component sizes converge to the excursions of an inho...
متن کاملScaling Limits of the Uniform Spanning Tree and Loop-erased Random Walk on Finite Graphs
Let x and y be chosen uniformly in a graph G. We find the limiting distribution of the length of a loop-erased random walk from x to y on a large class of graphs that include the torus Zn for d ≥ 5. Moreover, on this family of graphs we show that a suitably normalized finite-dimensional scaling limit of the uniform spanning tree is a Brownian continuum random tree.
متن کاملA zero-one law for the existence of triangles in random key graphs
Random key graphs are random graphs induced by the random key predistribution scheme of Eschenauer and Gligor under the assumption of full visibility. For this class of random graphs we show the existence of a zero-one law for the appearance of triangles, and identify the corresponding critical scaling. This is done by applying the method of first and second moments to the number of triangles i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009